Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Vacunas ; 2023.
Article in English | EuropePMC | ID: covidwho-20235757

ABSTRACT

Background In general, COVID-19 vaccines are safe and effective, but minor adverse effects are common. However, adverse effects have not been measured in several countries including Greece. Objective: To estimate the prevalence of adverse effects after the first COVID-19 booster dose, and to identify possible risk factors. Material and methods: We conducted a cross-sectional study with a convenience sample in Greece during November 2022. We measured several adverse effects after the booster dose, such as fatigue, headaches, fever, chills, nausea, etc. We considered gender, age, chronic disease, self-assessment of health status, COVID-19 diagnóstico, and self-assessment of COVID-19 course as possible predictors of adverse effects. Results: In our sample, 96% developed at least one adverse effect. Half of the participants (50.2%) developed one to five adverse effects, 35.9% developed six to ten adverse effects, and 9.5% developed 11 to 16 adverse effects. Mean number of adverse effects was 5.5. The most frequent adverse effects were pain at the injection site (84.3%), fatigue (70.8%), muscle pain (61%), swelling at the injection site (55.2%), headache (49.8%), fever (42.9%), and chills (41%). Females developed more adverse effects than males (p < 0.001). The prevalence of adverse effects of COVID-19 vaccines was statistically significant and positively associated with the severity of COVID-19 among COVID-recovered individuals (p < 0.05). Moreover, younger age was associated with increased adverse effects (p < 0.001). Conclusions: Almost all participants in our study developed minor adverse effects after the booster dose. Female gender, COVID-19 patients with worse clinical course, and younger individuals experienced more often adverse effects.

2.
Vacunas ; 2023 May 26.
Article in English | MEDLINE | ID: covidwho-2327828

ABSTRACT

Background: In general, COVID-19 vaccines are safe and effective, but minor adverse effects are common. However, adverse effects have not been measured in several countries including Greece. Objective: To estimate the prevalence of adverse effects after the first COVID-19 booster dose, and to identify possible risk factors. Material and methods: We conducted a cross-sectional study with a convenience sample in Greece during November 2022. We measured several adverse effects after the booster dose, such as fatigue, headaches, fever, chills, nausea, etc. We considered gender, age, chronic disease, self-assessment of health status, COVID-19 diagnóstico, and self-assessment of COVID-19 course as possible predictors of adverse effects. Results: In our sample, 96% developed at least one adverse effect. Half of the participants (50.2%) developed one to five adverse effects, 35.9% developed six to ten adverse effects, and 9.5% developed 11 to 16 adverse effects. Mean number of adverse effects was 5.5. The most frequent adverse effects were pain at the injection site (84.3%), fatigue (70.8%), muscle pain (61%), swelling at the injection site (55.2%), headache (49.8%), fever (42.9%), and chills (41%). Females developed more adverse effects than males (p < 0.001). The prevalence of adverse effects of COVID-19 vaccines was statistically significant and positively associated with the severity of COVID-19 among COVID-recovered individuals (p < 0.05). Moreover, younger age was associated with increased adverse effects (p < 0.001). Conclusions: Almost all participants in our study developed minor adverse effects after the booster dose. Female gender, COVID-19 patients with worse clinical course, and younger individuals experienced more often adverse effects.


Antecedentes: En general, las vacunas COVID-19 son seguras y eficaces, pero son frecuentes los efectos adversos leves. Sin embargo, los efectos adversos no se han medido en varios países, entre ellos Grecia. Objetivo: Estimar la prevalencia de efectos adversos tras la primera dosis de refuerzo de COVID-19 e identificar posibles factores de riesgo. Métodos: Realizamos un estudio transversal con una muestra de conveniencia en Grecia durante noviembre de 2022. Se midieron varios efectos adversos tras la dosis de refuerzo, fatiga, dolores de cabeza, fiebre, escalofríos, náuseas, etc. Consideramos el sexo, la edad, la enfermedad crónica, la autoevaluación del estado de salud, el diagnóstico de COVID-19 y la autoevaluación del curso de COVID-19 como posibles predictores de los efectos adversos. Resultados: En nuestra muestra, el 96% desarrolló al menos un efecto adverso. La mitad de los participantes (50,2%) desarrollaron de uno a cinco efectos adversos, el 35,9% desarrollaron de seis a diez efectos adversos, y el 9,5% desarrollaron de 11 a 16 efectos adversos. La media de efectos adversos fue de 5,5. Los efectos adversos más frecuentes fueron dolor en el punto de inyección (84,3%), fatiga (70,8%), dolor muscular (61%), hinchazón en el punto de inyección (55,2%), cefalea (49,8%), fiebre (42,9%) y escalofríos (41%). Las mujeres presentaron más efectos adversos que los hombres (p < 0,001). La prevalencia de los efectos adversos de las vacunas COVID-19 fue estadísticamente significativa y se asoció positivamente con la gravedad de COVID-19 entre los individuos recuperados de COVID (p < 0,05). Además, la menor edad se asoció con mayores efectos adversos (p < 0,001). Conclusiones: Casi todos los participantes en nuestro estudio desarrollaron efectos adversos menores tras la dosis de refuerzo. El sexo femenino, los pacientes de COVID-19 con peor evolución clínica y los individuos más jóvenes experimentaron efectos adversos con mayor frecuencia.

3.
Shock ; 58(6): 507-513, 2022 12 01.
Article in English | MEDLINE | ID: covidwho-2191213

ABSTRACT

ABSTRACT: Background : COVID-19 disease severity markers include mostly molecules related to not only tissue perfusion, inflammation, and thrombosis, but also biomarkers of neural injury. Clinical and basic research has demonstrated that SARS-COV-2 affects the central nervous system. The aims of the present study were to investigate the role of neural injury biomarkers and to compare them with inflammatory markers in their predictive ability of mortality. Methods : We conducted a prospective observational study in critically ill patients with COVID-19 and in a cohort of patients with moderate/severe disease. S100b, neuron-specific enolase (NSE), and inflammatory markers, including soluble urokinase plasminogen activator receptor (suPAR), were measured on intensive care unit or ward admission, respectively. Statistical comparisons between patient groups were performed for all biomarkers under investigation. Correlations between different biomarkers were tested with Spearman correlation coefficient. Receiver operating characteristic curves were plotted using mortality as the classification variable and the biomarker levels on admission as the prognostic variables. Results : A total of 70 patients with COVID-19 were included in the final analysis. Of all studied biomarkers, s100b had the best predictive ability for death in the intensive care unit, with an area under the curve of 0.73 (0.61-0.83), P = 0.0003. S100b levels correlated with NSE, interleukin (IL)-8, and IL-10 (0.27 < rs < 0.37, P < 0.05), and tended to correlate with suPAR ( rs = 0.26, P = 0.05), but not with the vasopressor dose ( P = 0.62). Conclusion : Among the investigated biomarkers, s100b demonstrated the best predictive ability for death in COVID-19 patients. The overall biomarker profile of the patients implies direct involvement of the nervous system by the novel coronavirus.


Subject(s)
COVID-19 , Nervous System Diseases , Phosphopyruvate Hydratase , Receptors, Urokinase Plasminogen Activator , S100 Calcium Binding Protein beta Subunit , Humans , Biomarkers/blood , COVID-19/blood , COVID-19/complications , Prognosis , Prospective Studies , Receptors, Urokinase Plasminogen Activator/blood , SARS-CoV-2 , Critical Illness , Nervous System Diseases/blood , Nervous System Diseases/diagnosis , Nervous System Diseases/virology , S100 Calcium Binding Protein beta Subunit/blood , Phosphopyruvate Hydratase/blood
4.
Stud Health Technol Inform ; 295: 570-573, 2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1924045

ABSTRACT

The COVID-19 pandemic transforms the healthcare delivery models and accelerates the implementation and the adoption of telemedicine solutions at all levels of the healthcare system. Telehealth services ensure the continuity of care and treatment of both inpatients and outpatients during this pandemic, while reducing the spread of the virus through hospitals. The aim of this paper is to present an intelligent remote monitoring system with innovative data analytics features for COVID-19 patients. The i-COVID platform provides remote COVID-19 patients monitoring. The presented solution is addressed to patients with mild COVID-19 symptoms, as well as it can be used for post intensive-care monitoring. The platform offers advanced analytic capabilities using Proactive AI, to detect health condition deterioration, and automatically trigger personalized support workflows. Remote monitoring of COVID-19 patients using bio-sensors, seems to be an effective tool against the COVID-19 pandemic, as reduces the number of visits to patient screening centres and hospital admissions.


Subject(s)
COVID-19 , Telemedicine , Delivery of Health Care , Humans , Pandemics/prevention & control , SARS-CoV-2
5.
J Pers Med ; 12(2)2022 Jan 27.
Article in English | MEDLINE | ID: covidwho-1690200

ABSTRACT

A limited number of coronavirus disease-19 (COVID-19) cases may require treatment in an intensive care unit (ICU). Arterial blood lactate levels are routinely measured in the ICU to estimate disease severity, predict poor outcomes, and monitor therapeutic handlings. A number of studies have suggested that, simultaneously with lactate, pyruvate should also be measured, providing augmented prognostic ability, and a better understanding of the underlying metabolic alterations in ICU patients. Hence, the aim of the present study was to elucidate the relationship between lactate levels and the lactate-to-pyruvate (LP) ratio with the clinical outcome in mechanically ventilated COVID-19 patients. Lactate and pyruvate were serially measured during the first 24 h of ICU stay. A group of ICU non-COVID-19 patients was used as a comparison group. The majority of COVID-19 patients (82.5%) had normal lactate levels and a normal LP ratio on ICU admission (normal metabolic pattern). A small, yet significant, percentage of patients had either elevated lactate levels or a high LP ratio (abnormal metabolic pattern); these patients exhibited a significantly higher risk of ICU mortality compared to the patients with a normal metabolic pattern (72.7% vs. 34.6%, p = 0.04). In our critically ill COVID-19 patients, elevated lactate levels or high LP ratios on admission to the ICU could be associated with poor clinical outcome.

6.
Diagnostics (Basel) ; 11(7)2021 Jul 13.
Article in English | MEDLINE | ID: covidwho-1526808

ABSTRACT

Endothelial dysfunction, coagulation and inflammation biomarkers are increasingly emerging as prognostic markers of poor outcomes and mortality in severe and critical COVID-19. However, the effect of dexamethasone has not been investigated on these biomarkers. Hence, we studied potential prognostic biomarkers of mortality in critically ill COVID-19 patients who had either received or not dexamethasone. Biomarker serum levels were measured on intensive care unit (ICU) admission (within 24 h) in 37 dexamethasone-free and 29 COVID-19 patients who had received the first dose (6 mg) of dexamethasone. Receiver operating characteristic (ROC) curves were generated to assess their value in ICU mortality prediction, while Kaplan-Meier analysis was used to explore associations between biomarkers and survival. In the dexamethasone-free COVID-19 ICU patients, non-survivors had considerably higher levels of various endothelial, immunothrombotic and inflammatory biomarkers. In the cohort who had received one dexamethasone dose, non-survivors had higher ICU admission levels of only soluble (s) vascular cell adhesion molecule-1 (VCAM-1), soluble urokinase-type plasminogen activator receptor (suPAR) and presepsin. As determined from the generated ROC curves, sVCAM-1, suPAR and presepsin could still be reliable prognostic ICU mortality biomarkers, following dexamethasone administration (0.7 < AUC < 0.9). Moreover, the Kaplan-Meier survival analysis showed that patients with higher than the median values for sVCAM-1 or suPAR exhibited a greater mortality risk than patients with lower values (Log-Rank test, p < 0.01). In our single-center study, sVCAM-1, suPAR and presepsin appear to be valuable prognostic biomarkers in assessing ICU mortality risk in COVID-19 patients, even following dexamethasone administration.

7.
J Pers Med ; 11(9)2021 Sep 07.
Article in English | MEDLINE | ID: covidwho-1417166

ABSTRACT

Studies have hypothesized a potential role of the interleukin (IL)-23/17 axis in coronavirus disease 2019 (COVID-19). However, to date, levels of IL-23 and 17 have not been compared between critically ill COVID-19 patients and critically ill non-COVID-19 patients. IL-23 and 17 were measured on admission to the intensive care unit (ICU) in critically ill COVID-19 (N = 38) and critically ill non-COVID-19 (N = 34) patients with an equal critical illness severity. Critically ill non-COVID-19 patients did not have sepsis or septic shock on ICU admission. None of the enrolled patients had previously received corticosteroids. In our study, circulating IL-17 levels were higher in the COVID-19 patients. More specifically, critically ill COVID-19 patients had levels of 0.78 (0.05-1.8) pg/mL compared to 0.11 (0.05-0.9) pg/mL in the critically ill non-COVID-19 patients (p = 0.04). In contrast, IL-23 levels were comparable between groups. A group of patients hospitalized in the specialized COVID-19 clinic (N = 16) was also used to evaluate IL-17 and IL-23 levels with respect to COVID-19 severity. Non-critically ill COVID-19 patients had undetectable levels of both cytokines. Our results support the notion of inhibiting IL-17 in critical COVID-19 infection.

8.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 19.
Article in English | MEDLINE | ID: covidwho-1323319

ABSTRACT

A damaged endothelium is an underlying condition of the many complications of COVID-19 patients. The increased mortality risk associated with diseases that have underlying endothelial dysfunction, such as acute respiratory distress syndrome (ARDS), suggests that endothelial (e) nitric oxide synthase (NOS)-derived nitric oxide could be an important defense mechanism. Additionally, intravenous recombinant angiotensin converting enzyme 2 (ACE2) was recently reported as an effective therapy in severe COVID-19, by blocking viral entry, and thus reducing lung injury. Very few studies exist on the prognostic value of endothelium-related protective molecules in severe COVID-19 disease. To this end, serum levels of eNOS, inducible (i) NOS, adrenomedullin (ADM), soluble (s) ACE2 levels, and serum (s) ACE activity were measured on hospital admission in 89 COVID-19 patients, hospitalized either in a ward or ICU, of whom 68 had ARDS, while 21 did not. In our cohort, the COVID-19-ARDS patients had considerably lower eNOS levels compared to the COVID-19 non-ARDS patients. On the other hand, sACE2 was significantly higher in the ARDS patients. iNOS, ADM and sACE activity did not differ. Our results might support the notion of two distinct defense mechanisms in COVID-19-derived ARDS; eNOS-derived nitric oxide could be one of them, while the dramatic rise in sACE2 may also represent an endogenous mechanism involved in severe COVID-19 complications, such as ARDS. These results could provide insight to therapeutical applications in COVID-19.

10.
Shock ; 56(5): 733-736, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1146305

ABSTRACT

INTRODUCTION: The endothelial protein C receptor (EPCR) is a protein that regulates the protein C anticoagulant and anti-inflammatory pathways. A soluble form of EPCR (sEPCR) circulates in plasma and inhibits activated protein C (APC) activities. The clinical impact of sEPCR and its involvement in COVID-19 has not been explored. In this study, we investigated whether sEPCR levels were related to COVID-19 patients' requirement for hospitalization. METHODS: Plasma sEPCR levels were measured on hospital admission in 84 COVID-19 patients, and in 11 non-hospitalized SARS-CoV2-positive patients approximately 6 days after reported manifestation of their symptoms. Multiple logistic regression analysis was performed to identify potential risk factors for hospitalization and receiver operating characteristic (ROC) curves were generated to assess their value. RESULTS: In our cohort, hospitalized patients had considerably higher sEPCR levels upon admission compared with outpatients [107.5 (76.7-156.3) vs. 44.6 (12.1-84.4) ng/mL; P < 0.0001)]. The ROC curve using hospitalization as the classification variable and sEPCR levels as the prognostic variable generated an area under the curve at 0.845 (95% CI = 0.710-0.981, P < 0.001). Additionally, we investigated the predictive value of sEPCR combined with BMI, age, or D-dimers. CONCLUSIONS: In our cohort, sEPCR levels in COVID-19 patients upon hospital admission appear considerably elevated compared with outpatients; this could lead to impaired APC activities and might contribute to the pro-coagulant phenotype reported in such patients. sEPCR measurement might be useful as a point-of-care test in SARS-CoV2-positive patients.


Subject(s)
Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , Endothelial Protein C Receptor/blood , Adult , Aged , Female , Fibrin Fibrinogen Degradation Products/biosynthesis , Hospitalization , Humans , Inflammation/blood , Male , Middle Aged , Outpatients , Phenotype , Predictive Value of Tests , Prognosis , RNA, Viral/metabolism , ROC Curve , Regression Analysis , Risk Factors , SARS-CoV-2 , Thrombosis/blood
11.
Cells ; 10(1)2021 Jan 19.
Article in English | MEDLINE | ID: covidwho-1038628

ABSTRACT

Endotheliopathy is suggested to be an important feature of COVID-19 in hospitalized patients. To determine whether endotheliopathy is involved in COVID-19-associated mortality, markers of endothelial damage were assessed in critically ill COVID-19 patients upon intensive care unit (ICU) admission. Thirty-eight critically ill COVID-19 patients were included in this observational study, 10 of whom died in the ICU. Endothelial biomarkers, including soluble (s)E-selectin, sP-selectin, angiopoietin 1 and 2 (Ang-1 and Ang-2, respectively), soluble intercellular adhesion molecule 1 (sICAM-1), vascular endothelial growth factor (VEGF), soluble vascular endothelial (VE)-cadherin, and von Willebrand factor (vWf), were measured upon ICU admission. The ICU cohort was subsequently divided into survivors and non-survivors; Kaplan-Meier analysis was used to explore associations between biomarkers and survival, while receiver operating characteristic (ROC) curves were generated to determine their potential prognostic value. sE-selectin, sP-selectin, Ang-2, and sICAM-1 were significantly elevated in ICU non-survivors compared to survivors, and also associated with a higher mortality probability in the Kaplan-Meier analysis. The prognostic values of sE-selectin, Ang-2, and sICAM-1 from the generated ROC curves were greater than 0.85. Hence, we conclude that in our cohort, ICU non-survivors had higher levels of specific endothelial markers compared to survivors. Elevated levels of these markers upon ICU admission could possibly predict mortality in COVID-19.


Subject(s)
COVID-19/complications , COVID-19/mortality , Endothelium, Vascular/pathology , Aged , Biomarkers/blood , COVID-19/diagnosis , Cohort Studies , Critical Illness , Endothelium, Vascular/virology , Female , Humans , Intensive Care Units , Male , Middle Aged , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL